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The use of 17'Yb NMR spectroscopy as a valuable structural
and mechanistic probe is expected to catalyze a rapid expansion
in Yb(II) chemistry.
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Effective molecular recognition requires a precise comple-
mentarity between several binding regions on the receptor and
the different chemical features of the substrate. We have recently
introduced! such a multi-site approach for the recognition of
nucleotide bases in which hydrogen bonding and aromatic stacking
groups within a macrocyclic receptor bind simultaneously to the
substrate. Varying the hydrogen bonding region has led to selective
receptors for thymine? and guanine,? while changlng the elec-
tronic characteristics of the stacking group results® in different
geometries for the aromatic-aromatic interaction.® In this paper
we report the further development of this approach with the
synthesis, structure, and binding properties of a family of receptors
for adenine derivatives.

The periphery of adenine offers four readily accessible hydrogen
bonding sites, the pyrimidine-N,NH of Watson-Crick and the
imidazole-N,NH of Hoogsteen base-pairing.> Molecular mo-
delling studies suggested that all four of these could be complexed
by a 1,2-bis(2-amino-6-pyridyl)ethane derivative in an anti con-
formation and with inwardly pointing pyridine and amide groups
(Chart I).> This particular orientation of hydrogen bonding
groups should be favored by incorporating the dipyridylethane
into a macrocycle which also contains a suitable =-stacking
component.

The synthesis of the adenine receptors is shown in Chart II.
Protection of 2-amino-6-picoline as its phthalimide derivative 1
followed by NBS bromination gave bromomethylpyridine 2 in 60%
yvield. Reductive dimerization® of 2 using chlorotris(triphenyl-
phosphine)cobalt(I)? afforded a 50% yield of 3% which was then
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deprotected via hydrazinolysis (70% yield) to diamine 4.2 High
dilution coupling of 4 (CH,Cl,, Et;N) with the appropriate
naphthalene diacid chloride 5a,b?*® gave macrocyclic receptors
6 and 7% in 17 and 19% yield, respectively.

The proposed binding orientation of the receptors (Chart I)
is supported by the X-ray crystal structure of macrocycle 6 (Figure
la). Two intramolecular hydrogen bonds between the amide-NHs
and ether-Os (H--0, 1.95 A, 2.00 A) stabilize a conformation
for the macrocycle in which the two amidopyridines are anti to
each other and approximately in the same plane. This places the
pyr-Ns at 5.04 A and the amide-NHs at 7.33 A apart from each
other with good binding complementarity to the amino group and
purine-Ns of adenine. In contrast, the crystal structure of receptor
7 (Figure 1b) shows a more open conformation with the di-
pyridylethane unit in a gauche arrangement. A 60° rotation
around the central C~C bond is required to form the binding
orientation.

The adenine-binding properties of the receptors were followed
by 'H NMR and showed a strong dependence on ring size.
Titration of 7 in CDCI; with 9-butyladenine 8'! caused large
downfield shifts in the receptor-NH (2.0 ppm) and adenine-NH,
(2.4 ppm) resonances consistent with the formation of a tetra-
hydrogen bonded complex, as in Chart I. In addition, upfield shifts
in the naphthalene-1,8- (0.4 ppm), 4,5- (0.16 ppm), and 3,6- (0.17
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Figure 1. (a) X-ray structure of 6 and (b) X-ray structure of 7.

ppm) and adenine-2- (0.08 ppm) and 8- (0.05 ppm) proton res-
onances are seen, reflecting the close approach of the two rings
in an aromatic stacking interaction (Chart III).2b Al] of the
shifts showed clear saturation behavior, and from these curves
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an association constant (K;) of 3200 M™! for 7:8 was determined.!?
This value is substantially larger* than related triple hydrogen
bonding receptors for thymine,? guanine,? and cytosine®® thus
confirming that simultaneous Watson~Crick and Hoogsteen in-
teractions are present in complex 7:8. The complementarity and
selectivity of this arrangement for adenine is further supported
by the weak association between 8 and 1-butylthymine (K < 23
M) or tripentanoylguanosine (K, < 10 M™!). Despite the high
level of preorganization apparent in Figure la, receptor 6 shows
much weaker binding to 8 (K, = 73 M™!). This is possibly due
to the two intramolecular hydrogen bonds, shown in solution by
their downfield shifted NH resonances (6 9.5 ppm in 6 compared
to 8.30 ppm in 7), which block the cavity and must be broken for
adenine binding to occur. Thus, the structure of 6 with two
intramolecular H-bonds between the pyr-NH and the rigid 2,7-
dioxynaphthalene provides a model for the conformational change
that accompanies the intermolecular H-bonding interaction be-
tween 7 and 9-alkyladenine 8.

In summary, we have shown that semirigid receptors with
oriented hydrogen bonding sites can form strong and selective
complexes with complementary substrates. X-ray structural
characterization provides important insights into the conforma-
tional changes involved in complexation.
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We report here novel catalytic asymmetric synthesis of optically
active 1-arylalkanols (up to 96% ee) through asymmetric hy-
droboration of styrenes catalyzed by a chiral cationic rhodium
complex, which complements the uncatalyzed asymmetric hy-
droboration with chiral alkylboranes derived from a-pinene that
has been successfully used for internal alkenes.!»2

Since Mannig and Noth reported in 1985 that rhodium com-
plexes catalyze the hydroboration with catecholborane,? a few
reports have appeared on application of the catalyzed hydro-
boration for organic synthesis, i.e., control of regio- and stereo-
chemistry in the hydroboration of allylic alcohol derivatives® and
catalytic asymmetric hydroboration of 1,2- and 1,1-disubstituted
alkenes.* We found that the use of a certain cationic phos-
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